Polarisers

Alexei Gilchrist

Description of polarisers in terms of Jones’ matrices.

Say we are representing the polarisation of the electric field as a two-element complex Jones’ vector where the elements describe the horizontal and vertical linear polarisation components. We can describe the action of a horizontal polariser by the matrix

\[\begin{equation*}\begin{pmatrix} 1 & 0 \\ 0 & 0 \\ \end{pmatrix}\end{equation*}\]
First, let’s make sure this makes sense. Horizontally polarised light should pass straight through and vertically polarised light should be blocked:
\[\begin{equation*}\begin{pmatrix} 1 & 0 \\ 0 & 0 \\ \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \end{pmatrix} \;\;\;\; \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \end{pmatrix}\end{equation*}\]
Diagonally polarised light will let through at half the intensity:
\[\begin{equation*}\begin{pmatrix} 1 & 0 \\ 0 & 0 \\ \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ \end{pmatrix} =\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ \end{pmatrix}\end{equation*}\]
and \(\left(1\left/\sqrt{2}\right.\right)^2=1/2\) as expected.

To extend this description to a linear polariser at an arbitrary angle \(\theta\), we imagine first rotating the light by \(-\theta\), passing through a horizontal polariser, then rotating back by \(\theta\). Each of these operations can be represented by a matrix, rotation of a 2D vector by \(\theta\) anti-clockwise is given by

\[\begin{equation*}R(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}.\end{equation*}\]
(see rotation-matrices). So the entire sequence, ordered right to left is
\[\begin{equation*}P_{\theta }=R(\theta ) \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ \end{pmatrix} R(-\theta )= \begin{pmatrix} \cos ^2\theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^2\theta \\ \end{pmatrix}\end{equation*}\]
In particular horizontal, vertical, diagonal and anti-diagonal polarisers have the form:
\[\begin{align*}P_{H} &= P_{0} = \begin{pmatrix} 1&0\\0&0 \end{pmatrix}\;\; & P_{V} &= P_{\pi/2} = \begin{pmatrix} 1&0\\0&0 \end{pmatrix} \\ P_{D} &= P_{\pi/4} = \frac{1}{2}\begin{pmatrix} 1&1\\1&1 \end{pmatrix}\;\; & P_{A} &= P_{-\pi/2} = \frac{1}{2}\begin{pmatrix} 1&-1\\-1&1 \end{pmatrix}\end{align*}\]

1 Malus’ Law

Now say we have horizontally polarised light and it passes through a linear polariser set at angle \(\theta\), the result is:

\[P_{\theta }\left( \begin{array}{c} 1 \\ 0 \\ \end{array} \right)=\left( \begin{array}{c} \cos ^2\theta \\ \cos\theta \sin\theta \\ \end{array} \right)\]
If we look at the intensity of the transmitted light, we recover Malus’ Law:
\[\left( \begin{array}{c} \cos ^2\theta \\ \cos \theta \sin \theta \\ \end{array} \right)^{\dagger }\left( \begin{array}{c} \cos ^2\theta \\ \cos \theta \sin \theta \\ \end{array} \right)=\cos ^2\theta \]

2 Crossed Polarisers

Similarly, if we cross two linear polarisers none of the light gets through

\[P_{\theta +\pi /2}P_{\theta }=\left( \begin{array}{cc} \sin ^2\theta & -\cos \theta \sin \theta \\ -\cos \theta \sin \theta & \cos ^2\theta \\ \end{array} \right)\left( \begin{array}{cc} \cos ^2\theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^2\theta \\ \end{array} \right)=\left( \begin{array}{cc} 0 & 0 \\ 0 & 0 \\ \end{array} \right)\]
but then if we insert a polariser in-between the crossed ones orientated at a diagonal to both, we suddenly start transmitting light again. That is, the operation becomes
\[P_{\theta +\pi /2}P_{\theta +\pi /4}P_{\theta }=\left( \begin{array}{cc} -\frac{1}{4} \sin (2 \theta ) & -\frac{1}{2} \sin ^2(\theta ) \\ \frac{\cos ^2(\theta )}{2} & \frac{1}{4} \sin (2 \theta ) \\ \end{array} \right).\]
and it’s easy to see that this would not produce a zero matrix.

3 As projectors

An alternative way of viewing polarisers is to consider linear polarised light orientated at an angle \(\theta\):

\[|\theta\rangle =R(\theta )\left( \begin{array}{c} 1 \\ 0 \\ \end{array} \right)=\left( \begin{array}{c} \cos \theta \\ \sin \theta \\ \end{array} \right),\]
where we have written the polarisation vector using the Dirac braket notation. Now, if we form the following outer-product \(|\theta \rangle\langle \theta| \), something that is known as a projector (yes I’m sneakily teaching you quantum mechanics), then the result is exactly the polariser orientated at angle \(\theta\), \(P_\theta\):
\[|\theta \rangle\langle \theta| =\left( \begin{array}{c} \cos \theta \\ \sin \theta \\ \end{array} \right)^{\dagger }\left( \begin{array}{c} \cos \theta \\ \sin \theta \\ \end{array} \right)=\left( \begin{array}{cc} \cos ^2\theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^2\theta \\ \end{array} \right)\]

Physically constructing polarisers for circular polarisation is difficult. It turns out it’s much easier to use a quarter-wave plate followed by a linear polariser.

© Copyright 2022 Alexei Gilchrist